Templates NO (12) #### 2019 / 2020 | University | Helwan | |------------|--| | Faculty | Computers and Artificial Intelligence | | Department | Information Systems – Software Engineering Program | # **Course Specifications** | 1- Course Data | | | | | | |------------------------------|---|---------------|-------------------------------------|--|--| | Code: ST 121 | Course Name: Probability and statistics - 1 | | | | | | | | | Level: 2 nd level | | | | Specialization: | No of Learning Units: | | | | | | Software Engineering Program | (2) Theoretical | (1) Practical | | | | | | The course should acquire the students the fundamental knowledge | | | | | |--|---|--|--|--|--| | | and concepts of: | | | | | | | 1. Recognize random phenomena. | | | | | | | 2. Identify the basic notations and concepts of probability and | | | | | | | statistics. | | | | | | | 3. Connect between set theory and probability theory. | | | | | | 2- Course Objective: | 4. Distinguish between discrete and continuous random variables. | | | | | | | 5. Clarify the basic properties of density and distribution | | | | | | | functions. | | | | | | | 6. Express some natural phenomena as a probability model. | | | | | | | 7. Derive the mean, the variance and moment generating | | | | | | | function for some important distributions. | | | | | | 3- Intended Learning Outcomes (ILOs | | | | | | | | On successful completion of this course the student will be able to: | | | | | | | On successful completion of this course the student will be able to: | | | | | | | a1. Identify the sample space, random events, probability and conditional | | | | | | A Knowledge and Understanding | a1. Identify the sample space, random events, probability and conditional probability concepts. | | | | | | A. Knowledge and Understanding | a1. Identify the sample space, random events, probability and conditional probability concepts. a2. Explain the importance of independence concept in probability. | | | | | | A. Knowledge and Understanding | a1. Identify the sample space, random events, probability and conditional probability concepts. a2. Explain the importance of independence concept in probability. a3. Recognize discrete and continuous distributions. | | | | | | A. Knowledge and Understanding | a1. Identify the sample space, random events, probability and conditional probability concepts. a2. Explain the importance of independence concept in probability. a3. Recognize discrete and continuous distributions. a4. Discuss the basic properties for probability distributions. Knowledge of | | | | | | A. Knowledge and Understanding | a1. Identify the sample space, random events, probability and conditional probability concepts. a2. Explain the importance of independence concept in probability. a3. Recognize discrete and continuous distributions. a4. Discuss the basic properties for probability distributions. Knowledge of some basic multivariate statistical distributions. | | | | | | A. Knowledge and Understanding | a1. Identify the sample space, random events, probability and conditional probability concepts. a2. Explain the importance of independence concept in probability. a3. Recognize discrete and continuous distributions. a4. Discuss the basic properties for probability distributions. Knowledge of some basic multivariate statistical distributions. On successful completion of this course the student will be able to: | | | | | | | a1. Identify the sample space, random events, probability and conditional probability concepts. a2. Explain the importance of independence concept in probability. a3. Recognize discrete and continuous distributions. a4. Discuss the basic properties for probability distributions. Knowledge of some basic multivariate statistical distributions. On successful completion of this course the student will be able to: b1. Prove some of the important theorems in probability. | | | | | | A. Knowledge and Understanding: B. Intellectual Skills: | a1. Identify the sample space, random events, probability and conditional probability concepts. a2. Explain the importance of independence concept in probability. a3. Recognize discrete and continuous distributions. a4. Discuss the basic properties for probability distributions. Knowledge of some basic multivariate statistical distributions. On successful completion of this course the student will be able to: b1. Prove some of the important theorems in probability. b2. Compute the measures of central tendency and dispersions. | | | | | | | a1. Identify the sample space, random events, probability and conditional probability concepts. a2. Explain the importance of independence concept in probability. a3. Recognize discrete and continuous distributions. a4. Discuss the basic properties for probability distributions. Knowledge of some basic multivariate statistical distributions. On successful completion of this course the student will be able to: b1. Prove some of the important theorems in probability. | | | | | ### **Software Engineering Program** | | At the end of the course, the student will be able to: | | | |---------------------------------------|--|--|--| | C. Bustanianal and Bustical Chille | c1. Demonstrate the practical importance for some probability distributions. | | | | C. Professional and Practical Skills: | c2. Apply probability and statistical models to improve data reading. | | | | | c3. Select suitable statistical methods to solve daily life problems. Being able | | | | | to make estimates from multivariate data. | | | | | The student will gain generals skill that make him capable of: | | | | D. General and Transferable Skills: | d1. Demonstrate self-learning in solving assignments in this course. | | | | | d2. Acquire the skills of extracting information from data. | | | | | d3. Ability to select appropriate approach to a problem. | | | | | 1- Descriptive statistics. | | | | | 2- Sample space. | | | | | 3- Probability axioms. | | | | | 4- Combinational techniques. | | | | | 5- Conditional probability. | | | | | 6- Independence and Bayes theorem. | | | | | 7- Random variables. | | | | 4- Course Content: | 8- Distribution functions. | | | | | 9- Moments and generating function. | | | | | 10- Some probability distributions. | | | | | 11- Joint distribution. | | | | | 12- Chebyshev's inequality and the law of large numbers. | | | | | 13- The central limit theorem and sampling distribution. | | | | | 14- Random processes. | | | | | 15- Correlation and estimation. | | | | | 5.1. Lectures. | | | | | 5.2. Data show presentation. | | | | 5- Learning and Teaching Methods: | 5.3. Web-sites recommendations. | | | | | 5.4. Self-learning. | | | | | 5.5. Solving additional problems in practical hours. | | | | | 6.1. One to one tutoring during office houres. | | | | 6- Learning and Teaching Methods for | 6.2. Tailored assignment. | | | | students with limited skills: | 6.3. Joining to working groups. | | | | | 6.4. Giving them more excercies. | | | | | | | | | 7- Students Evaluation: | | | | | | | | | | | - Written Exams. | | | | A. Used Methods | - Quiz. | | | | | - Reports. | | | | | - Assessment 1: Reports. 5 th week | | | | B. Schedule | - Assessment 2: Written Exam (Midterm) 7 th week | | | | | - Assessment 3: Quiz exam 4 th week & 12 th week | | | | | - Assessment 4: Written Exam (Final) depends on the exam schedule | | | ### **Software Engineering Program** | | - Mid-term examination | 20 % = 20/100 | | | | |-------------------------------|----------------------------------|--|--|--|--| | C. Grades Distribution | - Quiz | 10 % = 10/100 | | | | | C. Grades Distribution | - Reports | 10 % = 10/100 | | | | | | - Final exam | 60 % = 60 /100 | | | | | List of Books and References: | | | | | | | | | | | | | | A. Notes: | - Course notes prepared by staff | Course notes prepared by staff. | | | | | B. Mandatory Books: | · · | Mathematical Statistics with Applications. Seventh Edition, Dennis Wackerly, William Mendenhall and Richard L. Scheaffer (2008). Thomson Learning. | | | | | C. Suggested Books: | • | Probability and Statistical Inference. Ninth Edition, Robert V. Hogg,
Elliot A. Tanis and Dale L. Zimmerman (2015). Pearson Education. | | | | | | - www.Eviews.com | | | | | | D. Periodicals & Websites | - www.Minitab.com | | | | | | | - www.datacamp.com | | | | | | | - JASA | JASA | | | | Course Professor: Dr. Mohammed Yusuf **Chairman of the Scientific Department:**